Boosting Simple Collaborative Filtering Models Using Ensemble Methods
نویسندگان
چکیده
In this paper we examine the effect of applying ensemble learning to the performance of collaborative filtering methods. We present several systematic approaches for generating an ensemble of collaborative filtering models based on a single collaborative filtering algorithm (single-model or homogeneous ensemble). We present an adaptation of several popular ensemble techniques in machine learning for the collaborative filtering domain, including bagging, boosting, fusion and randomness injection. We evaluate the proposed approach on several types of collaborative filtering base models: kNN, matrix factorization and a neighborhood matrix factorization model. Empirical evaluation shows a prediction improvement compared to all base CF algorithms. In particular, we show that the performance of an ensemble of simple (weak) CF models such as k-NN is competitive compared with a single strong CF model (such as matrix factorization) while requiring an order of magnitude less computational cost.
منابع مشابه
Improving Simple Collaborative Filtering Models Using Ensemble Methods
In this paper we examine the effect of applying ensemble learning to the performance of collaborative filtering methods. We present several systematic approaches for generating an ensemble of collaborative filtering models based on a single collaborative filtering algorithm (single-model or homogeneous ensemble). We present an adaptation of several popular ensemble techniques in machine learnin...
متن کاملCombining Predictions for an accurate Recommender System
The application of ensemble learning to recommender systems is analyzed with the Netflix Prize dataset. We found that simple linear combination of predictions is not optimal in the sense of minimize the prediction RMSE. To predict ratings with collaborative filtering we use a set of predictions from different models (SVD, KNN, Restricted Boltzmann machine, Asymmetric Factor model, Global Effect...
متن کاملCombining Bagging and Additive Regression
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in t...
متن کاملEnsemble of M5 Model Tree Based Modelling of Sodium Adsorption Ratio
This work reports the results of four ensemble approaches with the M5 model tree as the base regression model to anticipate Sodium Adsorption Ratio (SAR). Ensemble methods that combine the output of multiple regression models have been found to be more accurate than any of the individual models making up the ensemble. In this study additive boosting, bagging, rotation forest and random subspace...
متن کاملYelp Recommendation System
We apply principles and techniques of recommendation systems to develop a predictive model of how customers would rate businesses they have not been to. Using Yelp’s dataset, we extract collaborative and content based features to identify customer and restaurant profiles. We use generalized regression models, ensemble models, collaborative filtering and factorization machines. We evaluate the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1211.2891 شماره
صفحات -
تاریخ انتشار 2012